Facility Mechanical Integrity and Non-Intrusive Inspection Technologies

By: Chris McGrath-Hardy
Integrity Manager
Summit Midstream Partners LLC
The Woodlands, Texas
OUTLINE

- Asset Integrity Goal
- Safety
- Effectiveness
- Economical
- Facility Mechanical Integrity
- Codes and Standards
- Inspection Planning
- Non-Intrusive Inspection – A Case Study
- Conclusion
- Questions
To ensure that all assets, new and old, remain safe, economical, and effective for their entire life cycle.
Safety

- Ensuring equipment is safe to operate
 - Equipment Condition
 - Fitness for Service

- Safety of personnel that:
 - Operate
 - Maintain
 - Inspect

- Intrusive Inspections pose a risk to inspectors that can be avoided through the use of non-intrusive inspections

- Avoidance of or minimizing entry into confined spaces where possible
Economical
Effectiveness

- Proactive vs Reactive

- Inspection Planning
 - Have we appropriately identified the damage mechanisms expected?
 - Have we prioritized our equipment appropriately?
 - How do we inspect for the expected damage mechanisms?

- Inspection Findings
 - Have we updated our damage mechanisms to reflect new findings?
 - Have the risk ranks been updated to reflect new findings?
 - Has the remaining life been evaluated against the economic life of the facility?
 - Have we updated our inspection techniques?
Effectiveness

- Need to understand that the true remaining life changes over the course of an asset life. Determined through:
 - Economic Life
 - Remaining Life based on operating conditions / vessel condition
 - Damage Mechanism Rates
 - Risk
Facility Mechanical Integrity

- Pressure Vessels
- AST’s – Aboveground Storage Tanks
- Pressure Piping
- Pressure Protection
- Utilization of industry accepted Codes and Standards
- Utilization of industry accepted Inspection Techniques
- Life Cycle Integrity Management – We will focus on the inspection of equipment aspect
Codes and Standards

Pressure Vessels
- ASME Boiler and Pressure Vessel Codes
- API 510 – Pressure Vessel Inspection Code
- API 572 – Inspection Practices for Pressure Vessels
- NBIC 23 – National Board Inspection Code

AST’s – Aboveground Storage Tanks
- API 650 – Welded Tanks for Oil Storage
- API 12F – Specification for Shop Welded Tanks for Storage of Production Liquids
- API 653 – Tank Inspection, Repair, Alteration, and Reconstruction
Codes and Standards

- **Pressure Piping**
 - ASME B31 Piping Codes
 - API 570 – Piping Inspection Code
 - API 574 – Inspection Practices for Piping System Components

- **Pressure Protection**
 - API 520 – Sizing, Selection, and Installation of Pressure-relieving Devices
 - API 576 – Inspection of Pressure Relieving Devices
Inspection Planning

- New construction / currently in-service
- Baseline Inspections are integral
- Identify Damage Mechanism Threats
- Identify Inspection Techniques
- Identify Inspection Interval / Frequency
- Compare Mitigated / Unmitigated Risk
- Identify Measurement Points (CMLs) or Areas of Focus
- Develop Inspection Plan
Identify Damage Mechanisms

- Selection of appropriate degradation mechanisms from industry sources, such as API 571

- Past history of damage in similar vessels identified by previous inspections (if applicable)

- When identifying damage mechanisms, the following should be considered:
 - Operational Parameters
 - Fluid Phases
 - Fluid Contents
 - Materials of construction
 - Equipment design
Non-Destructive Inspection Techniques

- **Standard NDE Techniques**
 - Ultrasonic Thickness (UT) - Quantitative
 - Radiographic Technique (RT) – Qualitative
 - Penetrant Technique (PT) – Qualitative
 - Magnetic Particle Testing - Qualitative

- **Advanced NDE Techniques**
 - Automated Ultrasonic Testing (AUT)
 - Guided Wave UT (GWUT)
 - Alternating Current Field Measurement (ACFM)
 - Digital Radiography
 - Eddy Current
 - Phased Array UT
 - Shear Wave UT
 - Time of Flight Diffraction (TOFD)
 - Acoustic Emission
 - Infrared Inspection
<table>
<thead>
<tr>
<th>Damage Mechanism</th>
<th>Damage Type</th>
<th>NDE Type</th>
<th>Advanced NDE</th>
<th>Typical Equipment / Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric Corrosion</td>
<td>Uniform Corrosion</td>
<td>VT, Pit Gauge</td>
<td>GWUT, PEC</td>
<td>All equipment, external, areas of failed coating.</td>
</tr>
<tr>
<td>Corrosion Under Insulation</td>
<td>Localized Wall Thinning</td>
<td></td>
<td>PEC, Profile RT, GWUT, IR, Neutron Backscatter</td>
<td>Equipment with damaged or improperly installed insulation, equipment with damaged or leaking steam tracing, anywhere that moisture or water can collect, includes under fireproofing.</td>
</tr>
<tr>
<td>General Internal Corrosion</td>
<td>Uniform Corrosion</td>
<td>UTT, MUT</td>
<td>C-Scan Straight Beam, AUT, TOFD</td>
<td>Any service with the potential for water</td>
</tr>
<tr>
<td>Microbiologically Induced Corrosion (MIC)</td>
<td>Localized Wall Thinning / pitting</td>
<td>MUT</td>
<td>C-Scan Straight Beam, AUT</td>
<td>Stagnant or low flow vessels, storage tanks, heat exchangers, etc</td>
</tr>
<tr>
<td>CO₂ Corrosion</td>
<td>Localized Wall Thinning / pitting</td>
<td>VT, UT, RT</td>
<td>C-Scan Straight Beam, AUT, TOFD</td>
<td>Carbon steel equipment, areas of turbulent flow</td>
</tr>
<tr>
<td>Sour Water Corrosion</td>
<td>Uniform Corrosion</td>
<td>UT, RT</td>
<td>C-Scan Straight Beam, AUT, TOFD</td>
<td>Any sour service equipment with chance for water. Will see iron sulfide scale, etc.</td>
</tr>
<tr>
<td>Fatigue Cracking</td>
<td>Cracking</td>
<td>VT, MT, PT</td>
<td>SWUT, PAUT</td>
<td>Can be Thermal or Mechanical Fatigue, Areas of stress raisers - weld seams, nozzles, Mole Sieves, Compressor vessels, piping</td>
</tr>
<tr>
<td>Wet H2S Damage</td>
<td>Cracking</td>
<td>VT, MT, PT</td>
<td>SWUT, PAUT</td>
<td>Weld Seams and Nozzles</td>
</tr>
<tr>
<td>Corrosion Under Saddle Supports</td>
<td>Localized Corrosion</td>
<td></td>
<td>PAUT, Guided Wave</td>
<td>Any equipment sitting on support saddles.</td>
</tr>
<tr>
<td>Preferential weld root corrosion - circ and seam welds, HAZ</td>
<td>Localized pitting at welds</td>
<td>MUT</td>
<td>TOFD</td>
<td>Circ and long seams on piping, vessels</td>
</tr>
<tr>
<td>Preferential weld root corrosion - nozzle to shell welds, HAZ</td>
<td>Localized pitting at welds</td>
<td>MUT</td>
<td>PAUT</td>
<td>nozzle to shell welds on pressure vessels</td>
</tr>
<tr>
<td>Under Deposit Corrosion</td>
<td>Localized Wall Thinning</td>
<td>UTT</td>
<td>C-Scan Straight Beam, AUT, TOFD</td>
<td>Areas of low flow or stagnant fluid where there is settlement.</td>
</tr>
</tbody>
</table>
Identification of CMLs / Selection of Inspection Methods

- Identification based on metal loss versus cracking and areas of expected degradation
- Automated/Semi-automated or manual Inspection techniques
- Selection of CMLs based on Damage mechanism identified
- Accessibility of areas expected to see damage
- Percentage of areas to be inspected
- Data retention Inspection technologies
Non-Intrusive Inspection – Case Study

Horizontal Separator Vessel in Sweet Service (Constructed in 1998)

Damage Mechanisms Expected
 General Wall Thinning
 Erosion/Erosion Corrosion
 Weld Root Corrosion
 MIC Corrosion
 Corrosion Under Saddle Supports

100% Insulation was removed prior to inspection

Surface was prepared per NDE Inspector Requirements

API 510 Visual External Inspection – 2012

No history of failures, production upsets, etc.
Non-Intrusive Inspection Planning
Non-Intrusive Inspections – Corrosion Mapping

Automated System Corrosion Mapping Inspections

Precise Accuracy (w/ Coating)

Y-Axis 20°

Y-Axis 45°
Non-Intrusive Inspections – Corrosion Mapping
Non-Intrusive Inspections – Phased Array
Non-Intrusive Inspections - TOFD
Non-Intrusive Inspections – Summary of Findings

Corrosion Mapping revealed maximum of 2% wall loss on the bottom half of the vessel (0.005 mpy)

No significant damage noted on nozzles

No significant corrosion noted under saddles

No weld root corrosion detected

Vessel is deemed fit for continued service with remaining life of > 10 years

Removal of insulation allowed us to perform CUI Inspection – no damage found
Non-Intrusive Inspections – Significance of Findings

Per API 510 Section 6.5.2
On stream inspections can be used in lieu of internal inspections if:

Vessel entry is possible, but the following conditions are met:
- Known corrosion less than 0.005 in./year
- Remaining Life > 10 years
- Corrosive character of contents (and trace components), has been established by at least 5 years of the same or similar service
- No questionable condition discovered during external inspection
- Operating temperature does not exceed lower temperature limits for creep rupture range of the vessel material (> 650 F)
- Vessel not subject to environmental or hydrogen damage from internal fluid
- Does not have nonintegrally bonded liner such as strip or plate lining
Non-Intrusive Inspections – Future Inspections

Vessel in question met all requirements listed

Techniques selected add to the inspection confidence and can be supplemented by:

- Monitoring Production Concerns/Upsets
- Fluid Sampling
- Sand Monitoring
- Establishing IOWs
Non-Intrusive Inspections – Cost/Benefits Analysis

Estimate: Facility produces 10,000 BPD @ $50/BBL = $500,000 USD/day

Cost of Intrusive Inspection:

Lost Production (~ 5 days) - $2,500,000
Scaffolding / Cleaning – $50,000 - $100,000
Inspection - ~ $20,000

Cost of Non-Intrusive Inspection:

Lost Production - $0 (No downtime)
Scaffolding / Insulation Removal - $50,000
Inspection - $30,000
Conclusions

Requirements are to meet integrity goals
 Safely
 Economically
 Effectively

Safety
 Current day technology can minimize risk / exposure to personnel

Economic Benefits
 Reduced downtime meaning reduced lost production
 Preventive Maintenance vs Reactive

Effectiveness
 Detection of damage is not limited to relying on the human eye
 Pin pointing damage mechanisms based on operational data, fluid data
 Accurately quantify damage for fitness for service assessments and predictive analysis
Conclusions

Industry best practices are available for all facets of asset integrity and should be utilized.

Technologies listed are proven and accepted within industry

Accurately determine the integrity of pressure equipment

More tools in the toolbag. Allows more creativity.
QUESTIONS?
Contact Information

CHRIS MCGRATH-HARDY
Summit Midstream Partners, LLC
Integrity Manager
Office: 832-608-6165
Cell:832-610-4527